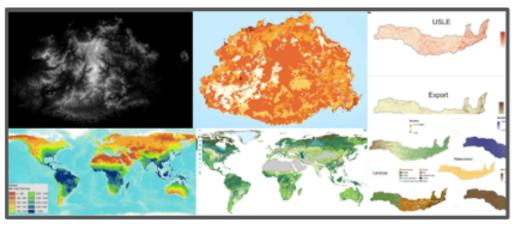

Seeing the forest for the trees: advances in vegetation monitoring and carbon sequestration modelling using satellite imagery, Google Earth Engine and FullCAM.

Nicholas Metherall¹⁺²

Science team USP: Hilda Waqa Sakiti, Antoine N'Yuerte, SPC Science: Samisoni Sauni, Jose Antoniou, John Carreons and George Naboutuiloma SPC GIS: Sachindra Singh, Carrol Chan, Jade Delevaux

2) Australian National University

1) University of the South Pacific


Key words: GIS, environmental modelling, forest, water basin, monitoring

gef

INTERNATIONAL WATERS EXPERIENCE NOTES

2021-02

Spatial Prioritization and Planning Procedures – Planning Trials in several PICs

Structure of presentation

1. Background reading - guidelines and past work on spatial prioritization including reports and peer-reviewed literature

2. Methods

a. Steps set out in Vanuatu report b. Additional steps and a. Enablers – support troubleshooting

3. Results - in progress

Literature (guidelines - grey)

Main sources and instructions

Delevaux, J.M.S. & Stamoulis, K.A. (2020) Assessment of ridge-to-reef management actions in Tagabe watershed and Mele Bay, Vanuatu. Suva, Fiji SPC, 63 pp.

Assessment of ridge-to-reef management actions in Tagabe watershed and Mele Bay, Vanuatu

Scenario planning

Delevaux, J.M.S. & Stamoulis, K.A. (2019) Identification of priority sites for future upscaling ridgeto-reef investments in Vanuatu. Suva, Fiji SPC, 48 pp

Spatial prioritization

Identification of priority sites for future upscaling of R2R investments, Vanuatu

> Prepared for Ridge-to-reef Programme, GeoScience, Energy & Maritime Division, SPC

> > by Seascape Solutions, LLC

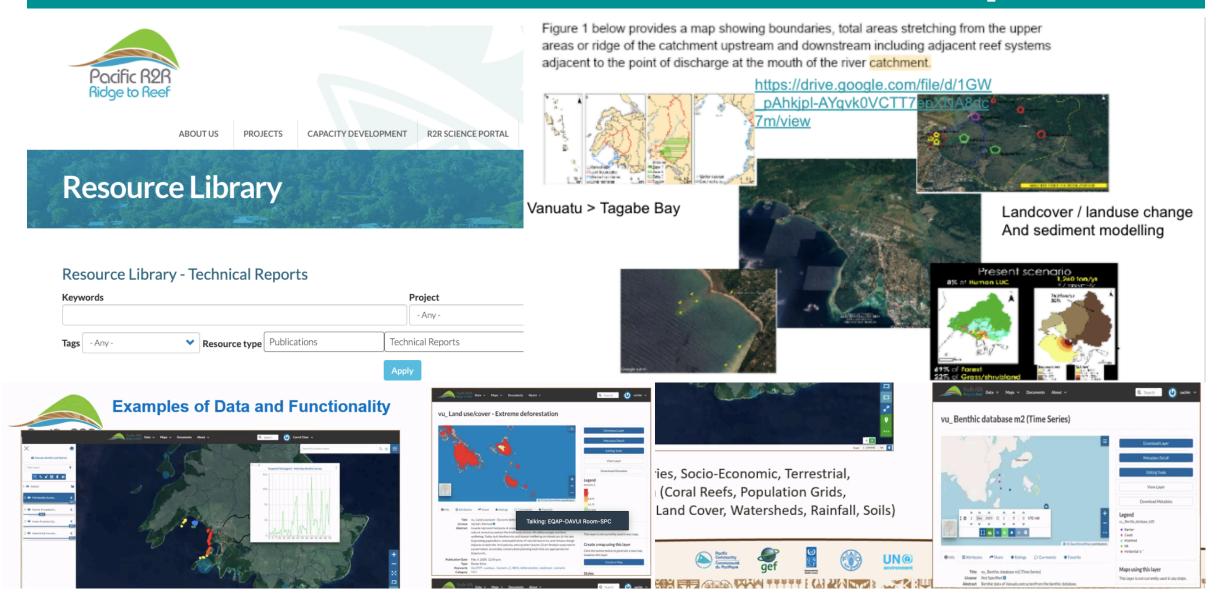
InVEST User Guides Natural Capital Project

InVEST User Guide

Public Discussion and Technical Support Forum

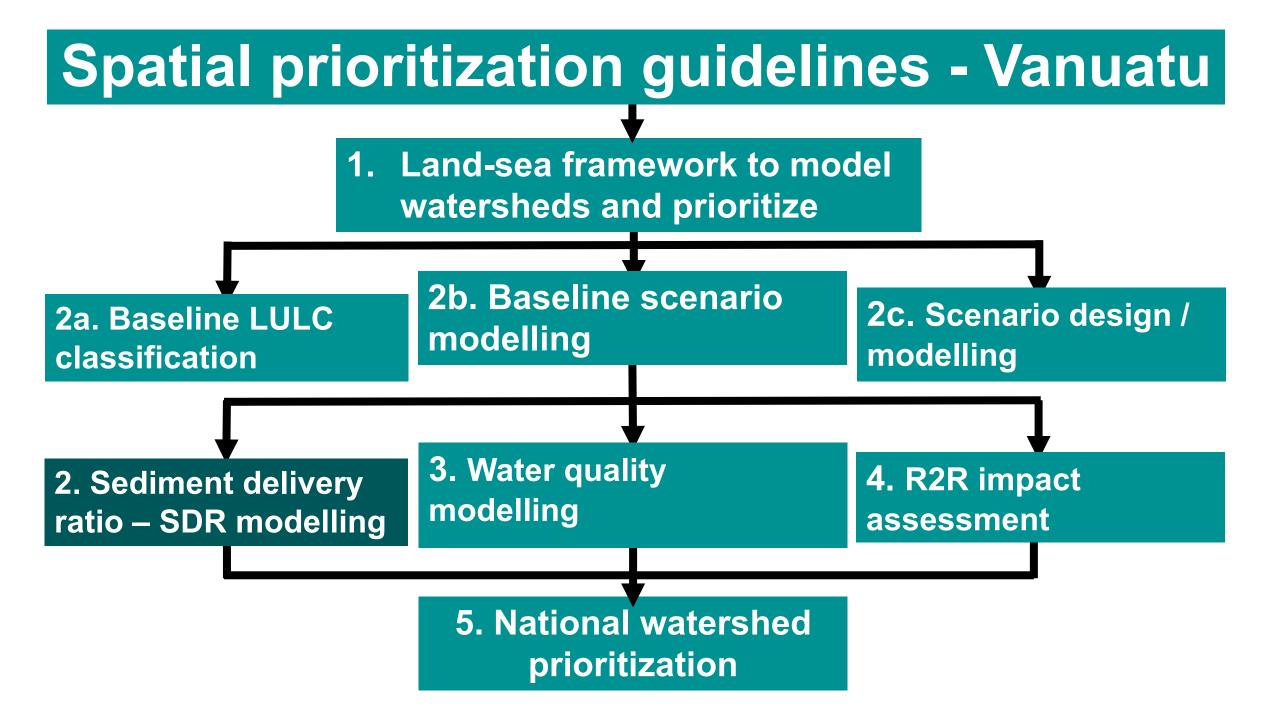
Input datasets for SDR (data sources & pre-processing) AuCap Software Support sdr

Many thanks to the incredibly helpful developers and GIS experts who provide support on these fora...


I have recently completed some of the tutorials for InVEST SDR in both the first module and the data acquisition and processing section in the latter section. The modules allow us to get an understanding of what the input data might look like. I am now in the process of trying to work out how best to generate these data inputs for my own case study area.

The guidelines here are fairly comprehensive too: SDR: Sediment Delivery Ratio - InVEST documentation

have highlighted the remaining gaps in my knowledge for the SDR model here in yellow:



SPC resources and technical reports

Literature (peer reviewed)

- Anderson, T. R., Fletcher, C. H., Barbee, M. M., Romine, B. M., Lemmo, S., & Delevaux, J. M. (2018). Modeling multiple sea level rise stresses reveals up to twice the land at risk compared to strictly passive flooding methods. *Scientific reports*, 8(1), 1-14.
- Ashiagbor, G., Forkuo, E. K., Laari, P., & Aabeyir, R. (2013). Modeling soil erosion using RUSLE and GIS tools. *Int J Remote Sens Geosci*, 2(4), 1-17.
- Borselli, L., Cassi, P., Torri, D., 2008. Prolegomena to sediment and flow connectivity in the landscape: A GIS and field numerical assessment. Catena 75, 268-277.
- Delevaux, J. M., Whittier, R., Stamoulis, K. A., Bremer, L. L., Jupiter, S., Friedlander, A. M., ... & Ticktin, T. (2018). A linked land-sea modeling framework to inform ridge-to-reef management in high oceanic islands. *PloS one*, *13*(3), e0193230.
- Delevaux, J., Winter, K. B., Jupiter, S. D., Blaich-Vaughan, M., Stamoulis, K. A., Bremer, L. L., ... & Ticktin, T. (2018). Linking land and sea through collaborative research to inform contemporary applications of traditional resource management in Hawai 'i. *Sustainability*, *10*(9), 3147.
- Dumas, P., & Printemps, J. (2010, April). Assessment of soil erosion using USLE model and GIS for integrated watershed and coastal zone management in the South Pacific Islands. In *Proceedings Interprevent, International Symposium in Pacific Rim, Taipei, Taiwan* (pp. 856-866).
- Ram, A. R., Brook, M. S., & Cronin, S. J. (2019). Engineering geomorphological investigation of the Kasavu landslide, Viti Levu, Fiji. *Landslides*, *16*(7), 1341-1351.
- Ram, A. R., Brook, M. S., & Cronin, S. J. (2018). Geomorphological characteristics of slope failures in northeast Viti Levu island, Fiji, triggered by Tropical Cyclone Winston in February 2016. *New Zealand Geographer*, 74(2), 64-76.
- Ram, A. R., & Terry, J. P. (2016). Stream turbidity responses to storm events in a pristine rainforest watershed on the Coral Coast of southern Fiji. *International Journal of Sediment Research*, *31*(4), 279-290.
- Ram, A. R., & Terry, J. P. Land use and erosion risk in small forest catchments on the Coral Coast of Fiji: baseline estimates of sediment inputs to coastal lagoons.
- Stamoulis, K. A., & Delevaux, J. M. (2015). Data requirements and tools to operationalize marine spatial planning in the United States. *Ocean & Coastal Management*, *116*, 214-223.
- Stamoulis, K. A., Delevaux, J. M., Williams, I. D., Poti, M., Lecky, J., Costa, B., ... & Friedlander, A. M. (2018). Seascape models reveal places to focus coastal fisheries management. *Ecological Applications*, 28(4), 910-925.

InVEST Models

Carbon Storage and Sequestration	Habitat Risk Assessment
Coastal Blue Carbon	Annual Water Yield
Coastal Blue Carbon: Precurssor	NDR: Nutrient Delivery Ratio
Coastal Vulnerability	Pollinator Abundance: Crop Pollination
Crop production: percentile model	Visitation: Recreation and Tourism
Crop production: regression model	RouteDEM
Delineat It	Scenario Generator: Proximity Based
Marine Finfish Agriculture production	Unobstructed Views: Scenic Quality Provision
Marine Finfish Agriculture production Fisheries	Unobstructed Views: Scenic Quality Provision SDR: Sediment Delivery Ratio
Fisheries	SDR: Sediment Delivery Ratio
Fisheries Fisheries: Habitat Scenario Tool	Seasonal Water Yield
Fisheries Fisheries: Habitat Scenario Tool Forest Carbon Edge Effect	SDR: Sediment Delivery Ratio Seasonal Water Yield Urban Cooling

Models used in Vanuatu report

SDR: Sediment Delivery Ratio

Delineate It

Others – water quality and hydrology

ArcGIS Hydro Toolbox

QGIS Hydrology tools

Water quality model > SDR

What is InVEST - NatCap

Stanford University

Who We Are - Research - Impact - InVEST Software Platform - Discover - News -

InVEST

InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs) is a suite of models used to map and value the goods and services from nature that sustain and fulfill human life. It helps explore how changes in ecosystems can lead to changes in the flows of many different benefits to people.

What is InVEST?

InVEST is a suite of free, open-source software models used to map and value the goods and services from nature that sustain and fulfill human life. If properly managed, ecosystems yield a flow of services that are vital to humanity, including the production of goods (e.g., food), life-support processes (e.g., water purification), and life-fulfilling conditions (e.g., beauty, opportunities for recreation), and the conservation of options (e.g., genetic diversity for future use). Despite its importance, this natural capital is poorly understood, scarcely monitored, and, in many cases, undergoing rapid degradation and depletion.

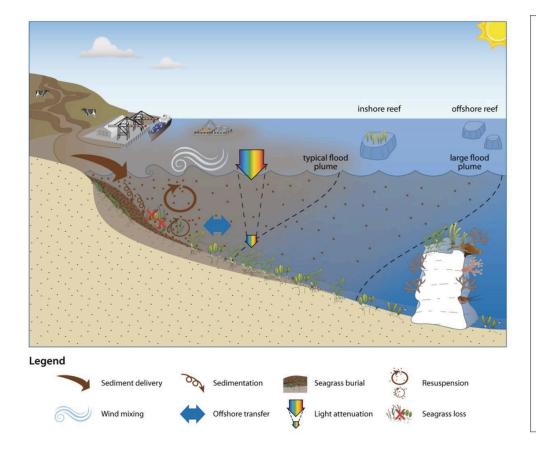
Governments, non-profits, international lending institutions, and corporations all manage natural resources for multiple uses and inevitably must evaluate tradeoffs among them. The multi-service, modular design of InVEST provides an effective tool for balancing the environmental and economic goals of these diverse entities.

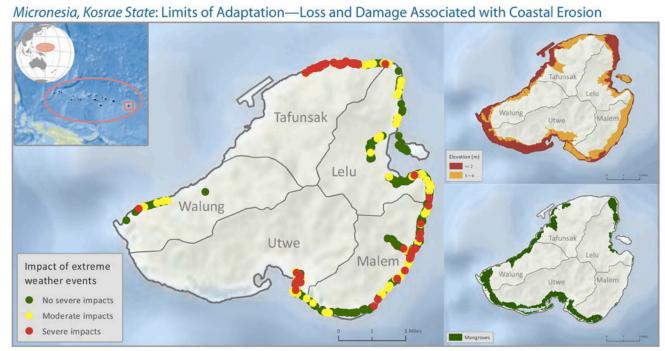
InVEST

Support Our Work

Q

Search this site ...


integrated valuation of ecosystem services and tradeoffs


Lownload InVEST 3.8.9 (Windows)

- 📥 🛛 Download InVEST 3.8.9 (Mac)
- InVEST User's Guide (online)

dlder and Development Versions of InVEST

Modelling impacts of sediment transport > implications for coastal reef ecosystems

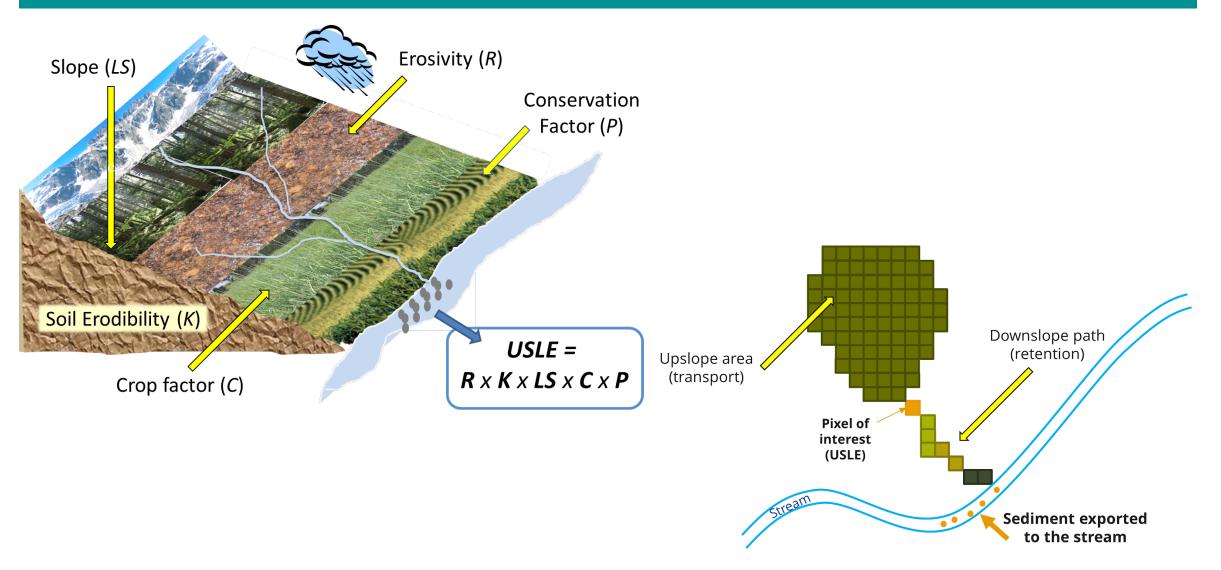
Data Sources: The data on the coastal erosion impacts of extreme weather events (left) were obtained from a household survey conducted on Kosrae island in 2012. The data on elevation (upper right) were obtained from Giri et al. 2013. Global Mangrove Forests Distribution, 2000. *Global Ecology and Biogeography* 20 (1): 154–59.

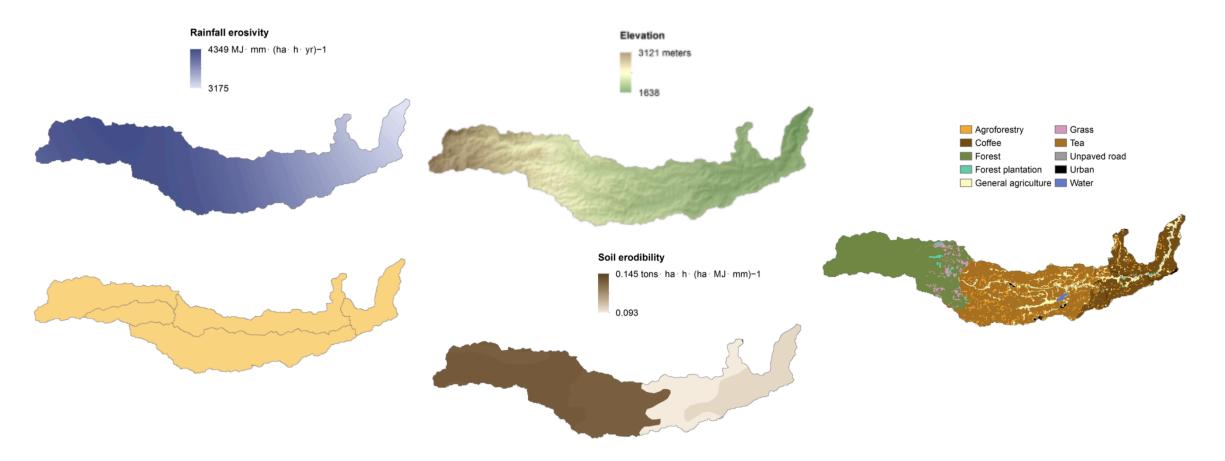
Center for International Earth Science Information Network Lawn bastruch (Cotawa Ukervastry)

Map Credit: CIESIN Columbia University, December 2013. © 2013. The Trustees of Columbia University in the City of New York.

- spatially explicit model
- uses remote sensing satellite imagery data inputs
- computes amount of annual soil loss from each pixel
- then computes the ratio of soil loss reaching the stream > transported out of the catchment.

The result of soil loss becomes a proxy for catchment vulnerability as the sediment

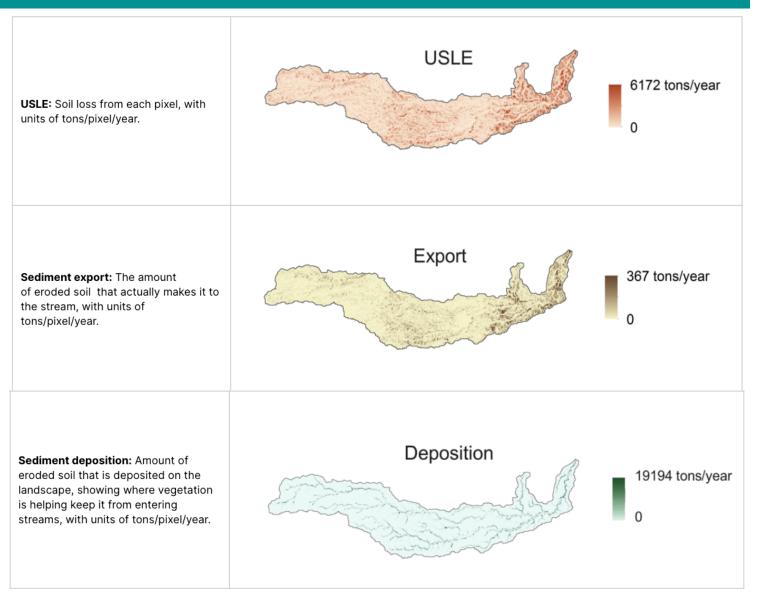

Annual Soil Loss


The amount of annual soil loss on pixel *i*, $usle_i$ (units: $tons \cdot ha^{-1}yr^{-1}$), is given by the revised universal soil loss equation (RUSLE1):

$$usle_i = R_i \cdot K_i \cdot LS_i \cdot C_i \cdot P_i, \tag{44}$$

where

- R_i is rainfall erosivity (units: MJ · mm(ha · hr)⁻¹),
- K_i is soil erodibility (units: ton · ha · hr(MJ · ha · mm)⁻¹),
- LS_i is a slope length-gradient factor (unitless)
- C_i is a crop-management factor (unitless)
- and P_i is a support practice factor (Renard et al., 1997). (cf. also in (Bhattarai and Dutta, 2006)). (unitless)



USLE

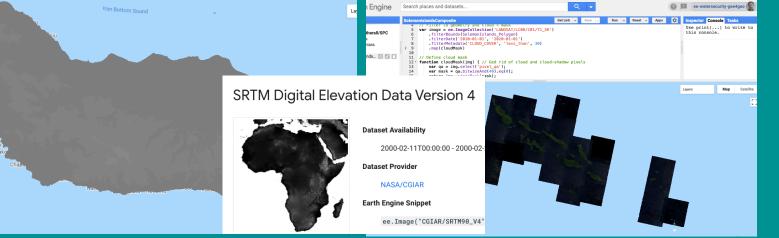
Sediment export

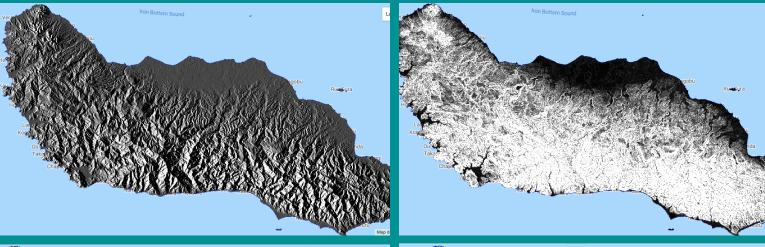
Sediment deposition

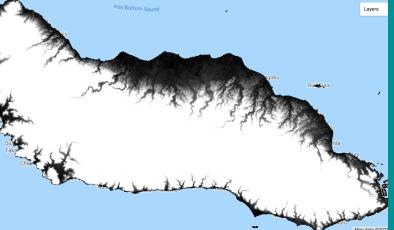
Sediment Delivery Ratio (SDR) Model

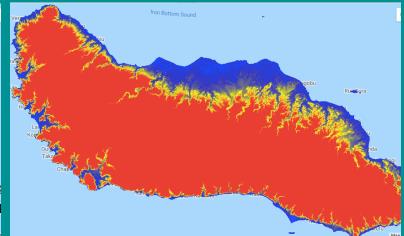
INVEST SDR - data input requirements:

- 1. DEM (raster)
- 2. Rainfall erositivity index (raster)
- 3. Soil erodibility (raster)
- 4. Land-use / land-cover (raster)
- 5. Watersheds (vector)
- 6. Biophysical table (CSV)
- 7. Threshold Flow Accumulation
- 8. Drainages (raster optional)
- 9. Borselli K parameter
- 10. Borselli IC0 parameter
- 11. Max SDR Value


*	Workspace	/nicholasmetherall/Documents/sdr_workspace	
*	Results suffix (optional)		0
×	Digital Elevation Model (Raster)		0
×	Rainfall Erosivity Index (R) (Raster)		0
×	Soil Erodibility (Raster)		0
×	Land-Use/Land-Cover (Raster)		0
×	Watersheds (Vector)		0
×	Biophysical Table (CSV)		0
×	Threshold Flow Accumulation		0
•	Drainages (Raster) (Optional)		0
×	Borselli k Parameter		0
×	Borselli ICO Parameter		0
×	Max SDR Value		0


Model - data inputs


SDR guidelines:	http://releases.nat	uralcapitalproject.org/invest-userguide/latest/sdr.						
Slides: https://doo	s: https://docs.google.com/presentation/d/1alZm7C7mAeCwfzShkJzB67UzZCfJHGwIrNuknWXv6Ss/edit#slide=id.gae1f0f23af_0_22							
	Symbol	Parameter	Unit measurement	Sources				
	Ri	rainfall erosivity	(units: MJ·mm(ha·hr)-1)					
	Ki	soil erodibility	(units: ton · ha · hr(MJ · ha · mm)-1),					
	LSi	slope length-gradient factor	(unitless)					
	Ci	crop-management factor	(unitless)					
	Pi	support practice factor	(unitless)	(Renard et al., 1997). (cf. also in (Bhattarai and Dutta, 2006)).				
	-	Slides: https://docs.google.com/press Symbol Ri Ki LSi Ci	Slides: https://docs.google.com/presentation/d/1alZm7C7mAeCwfzShkJzB67UzZCf. Symbol Parameter Ri rainfall erosivity Ki soil erodibility LSi slope length-gradient factor Ci crop-management factor	Symbol Parameter Unit measurement Ri rainfall erosivity (units: MJ·mm(ha·hr)-1) Ki soil erodibility (units: ton·ha·hr(MJ·ha·mm)-1), LSi slope length-gradient factor (unitless) Ci crop-management factor (unitless)				


Model - data inputs

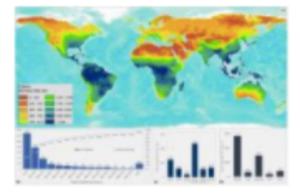
	Format	Symbol	Source	Resolution	Link (global dataset)
$usle_i = R_i \cdot K_i \cdot LS_i \cdot C_i \cdot P_i,$ Digital Elevation Model	geotiff raster	DEM	Google Earth Engine SRTM	30m x 30m	1. https://developers.google.com/earth-engine/datase 2. https://asterweb.jpl.nasa.gov/gdem.asp 3. http://dwtkns.com/srtm/ 4. https://search.earthdata.nasa.gov/search/
Rainfall erositivity index	geotiff raster	R	Global Rainfall Erosivity		1. https://esdac.jrc.ec.europa.eu/content/global-rainfa 2. https://esdac.jrc.ec.europa.eu/content/global-rainfa
Soil erodibility	geotiff raster	к	 Soil and Terrain Database (SOTER) FAO Dataset 		 https://data.isric.org:443/geonetwork/srv/eng/catalc https://webarchive.iiasa.ac.at/Research/LUC/Extern
Land-use / land-use cover	geotiff raster	LULUC	1. NASA MODIS multiyear dataset 2. ESA dataset (2000, 2005, 2010)		1. https://lpdaac.usgs.gov/products/mcd12q1v006/ 2. http://www.esa-landcover-cci.org/ 3. https://lpdaacsvc.cr.usgs.gov/appeears/task/area
Watersheds	vector		1. ArcHydro 2. QGIS Hydro tools 3. InVEST - DelineatIt		
Biophysical table	csv table				
Threshold Flow Accumulation	coefficient value		100	0	
Drainages	geotiff raster				
Borselli K parameter	coefficient value	kb		2	
Borselli IC0 parameter	coefficient value	<i>IC</i> 0	0.4		
Max SDR Value	coefficient value		0.4	8	

Remote sensing data inputs (DEM)

- Solomon Islands -Guadalcanal
- Landsat satellite imagery
 Java scripting in Earth Engine
- Land mask
- DEM SRTM dataset (30m x 30m)
- Slope, Hill shade, Colour gradient
- Geotiff raster format
- GDEM available from NASA

Remote sensing data inputs - erosivity

Global Erosivity


Data - Maps The data are also accessible in: Global R-factor

https://esdac.jrc.ec.europa.eu/themes/globa I-rainfall-erosivity

https://esdac.jrc.ec.europa.eu/content/globa I-rainfall-erosivity#tabs-0-description=0

Global Rainfall Erosivi

Rainfall erosivity dataset (2017) is one of the input layers w

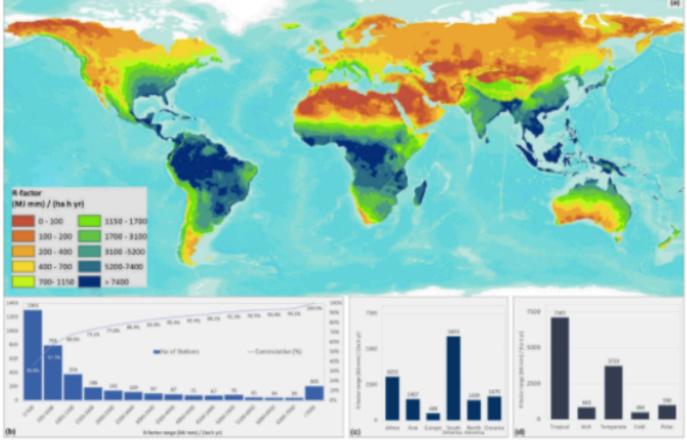
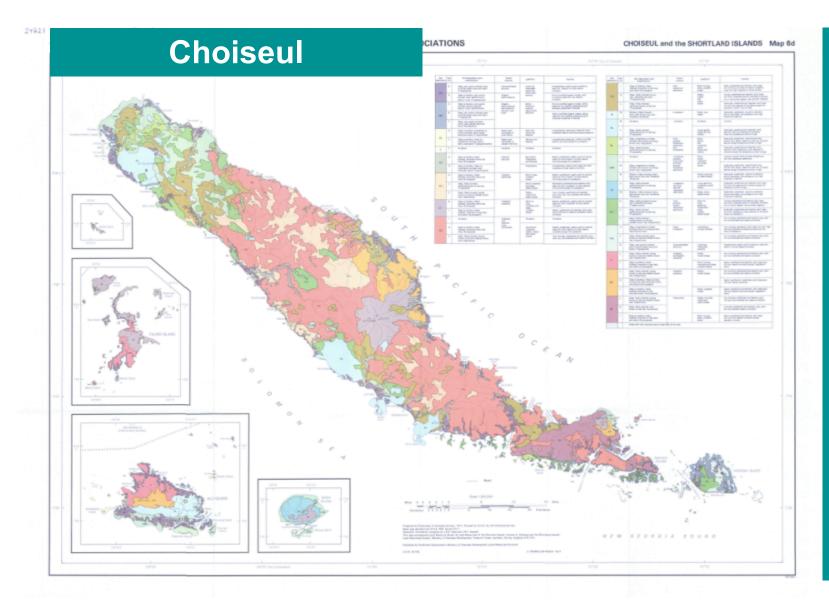
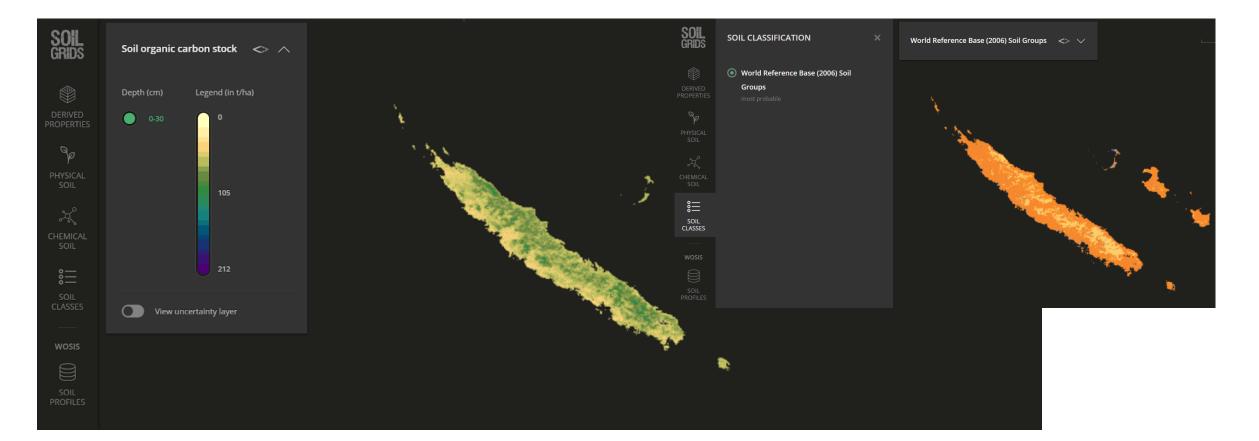



Fig 1: (a) Global Rainfall Erosivity map (spatial resolution of 30 arc-seconds). Erosivity classes correspond to quantiles:

Land use and landcover (LULC)

Model - data inputs - erodibility

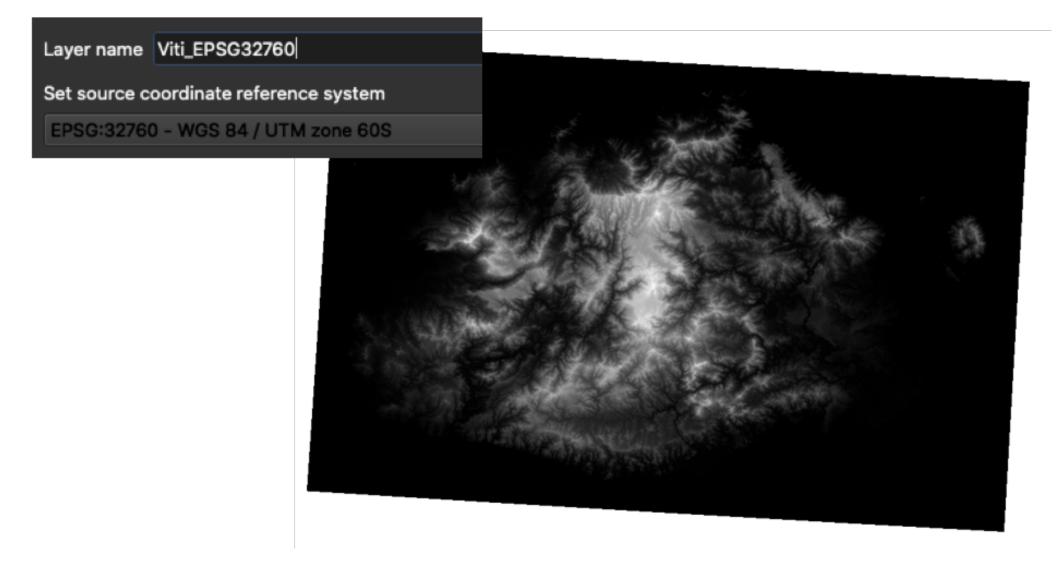

Incomplete datasets do not cover all areas in Solomon Islands

•

- In image format rather than in shapefile raster / vector format
- Requires many hours to digitize
 Then additional work to pre-process and group soil

classes data

Alternative source – soil grids dataset



Released in May 2020 – relatively new dataset

Still requires additional processing / grouping work

Working with existing dataset (QGIS)

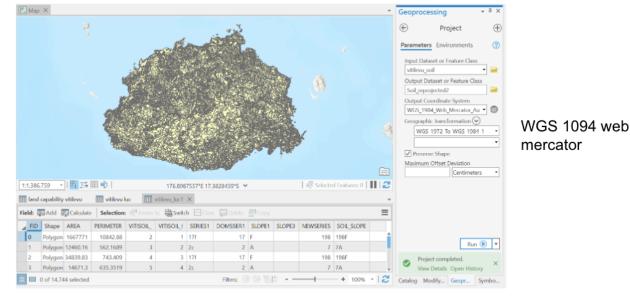
Reprojection (warp) from EPSG: 4326 to EPSG: 32670 - WGS 84 / UTM zone 60S

Working with existing dataset (QGIS)

Area

Perimeter Soil-type Texture

Aeration Drainage


pН

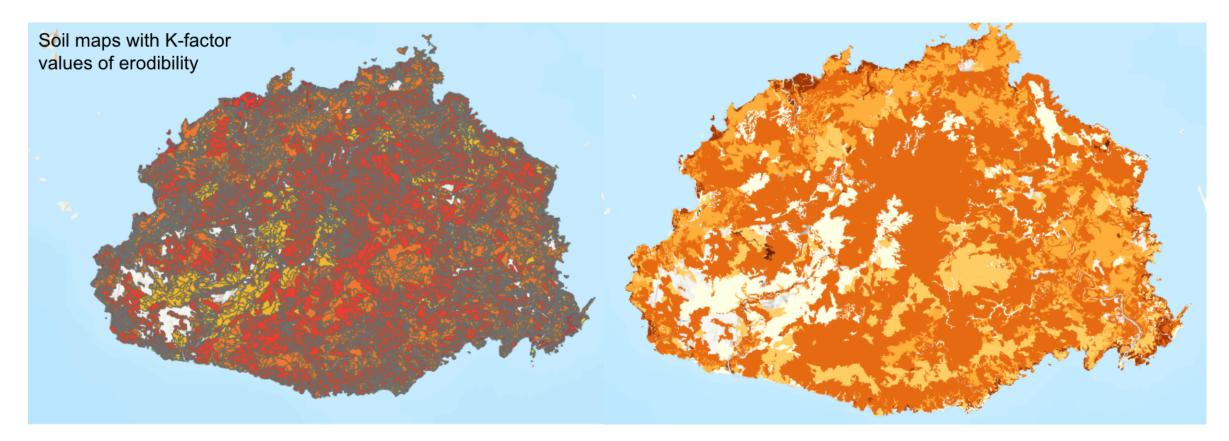
Slope

Soil group name

Contacted Ministry of Lands to seek soil and land use data

Reprojecting soil files - don't use QGIS - use ArcGIS

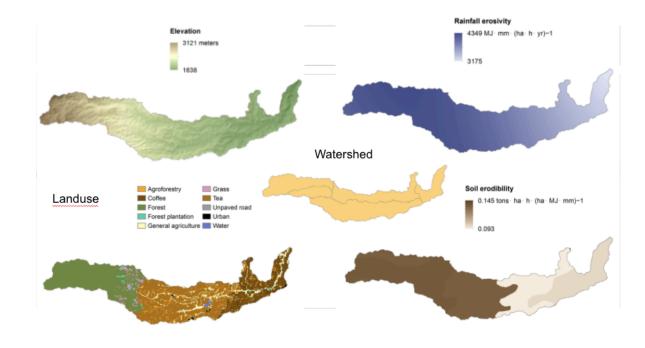
14,473 vector shapefile features - each with data:

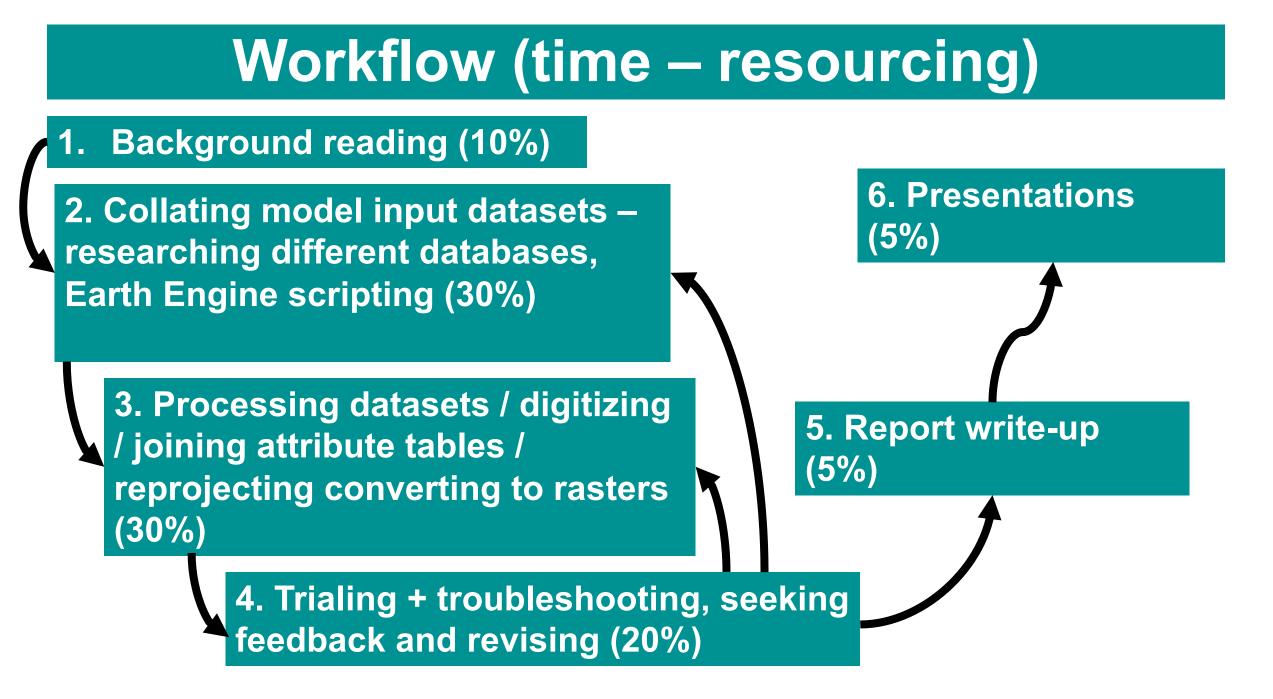

GIS attribute table

4	FI 💌	Shape	AREA	PERIMETER	VITISOIL_	VITISOIL_I	SERIES1	DOMSSER1	SLOPE1	NEWSERIES	Vitiid_2	OID
	14743	Polygon	23578.77	816.6111	14745	15109	39b	39	A	9	14744	8
	14742	Polygon	30578.64	923.4788	14744	15108	39b	39	A	9	14743	8
	14741	Polygon	27234.17	864.9823	14743	15107	39b	39	A	9	14742	8
	14740	Polygon	27582.61	683.6816	14742	15106	39b	39	A	9	14741	8
	14739	Polygon	326232.3	2673.489	14741	15105	60b	60	F	160	14740	159
	14738	Polygon	423306.9	2852.427	14740	15104	60b	60	G	160	14739	159
	14737	Polygon	451323.4	4023.558	14739	15103	54h	54	G	128	14738	127
	14736	Polygon	83277.53	1236.763	14738	15102	71e	71	A	5	14737	- 4
	14735	Polygon	39329.27	1169.398	14737	15100	65a	65	A	30	14736	29
	14734	Polygon	170457.3	4515.554	14736	15098	71b	71	A	2	14735	1
	14733	Polygon	33211.53	738.3934	14735	15096	71d	71	A	4	14734	3
	14732	Polygon	65938.86	1262.463	14734	15095	39b	39	A	9	14733	8
	14731	Polygon	23477.58	693.4404	14733	15099	68a	68	A	13	14732	12
	14730	Polygon	30205.39	680.1248	14732	15097	68a	68	A	13	14731	12
	14729	Polygon	32785.13	853.5484	14731	15093	71d	71	A	4	14730	3
	14728	Polygon	79440.75	2104.309	14730	15101	71c	71	A	3	14729	2
	14727	Polygon	46089.16	1083.28	14729	15091	71e	71	A	5	14728	4
	14726	Polygon	237052.1	3122.174	14728	15092	71d	71	A	4	14727	3
	14725	Polygon	22918.95	662.8014	14727	15090	65a	65	A	30	14726	29

Working with existing dataset (QGIS)

Polygon vector


Raster



Example inputs

Example outputs

	nent Delivery Ratio Model (SDR	1): loaded from autosave —		×
<u>E</u> d	lit <u>D</u> evelopment <u>H</u> elp			
		InVEST version 3.8.0 Model documentation Report	t ar	iss
~	Workspace	C:/NCP101/SDR_output	כ	
~	Results suffix (optional)	Gura		0
~	Digital Elevation Model (Raster)	C:/NCP101/NCP101_SDR_sample_data/SDR_input_Gura/DEM_gura.tif	Ì	0
~	Rainfall Erosivity Index (R) (Raster)	C:/NCP101/NCP101_SDR_sample_data/SDR_input_Gura/erosivity_gura.tif	Ì	0
~	Soil Erodibility (Raster)	C:/NCP101/NCP101_SDR_sample_data/SDR_input_Gura/erodibility_gura.tif	נ	0
~	Land-Use/Land-Cover (Raster)	C:/NCP101/NCP101_SDR_sample_data/SDR_input_Gura/LULC_gura.tif	נ	0
~	Watersheds (Vector)	C:/NCP101/NCP101_SDR_sample_data/SDR_input_Gura/subwatersheds_gura.shp	Ì	0
~	Biophysical Table (CSV)	C:/NCP101/NCP101_SDR_sample_data/SDR_input_Gura/InVEST_lulc_biophysical_table_gura.csv	נ	0
~	Threshold Flow Accumulation	1000		0
~	Drainages (Raster) (Optional)		Ì	0
~	Borselli k Parameter	2		0
~	Borselli ICO Parameter	0.5		0
	Max SDR Value	0.8		0

